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Abstract—This paper describes a situation awareness frame-
work, Frankenstack, that is the result of a multi-faceted endeavor
to enhance the expertise of cybersecurity specialists by providing
them with real-time feedback during cybersecurity exercises and
verifying the performance and applicability of monitoring tools
during those exercises. Frankenstack has been recently redevel-
oped to improve data collection and processing functions as well
as cyberattack detection capability. This extensive R&D effort
has combined various system and network security monitoring
tools into a single cyberattack detection and exercise feedback
framework.

Although Frankenstack was specifically developed for the
NATO CCD COE’s Crossed Swords exercise, the architecture
provides a clear point of reference for others who are building
such monitoring frameworks. Thus, the paper contains many
technical descriptions to reduce the gap between theoretical
research and practitioners seeking advice on how to implement
such complex systems.

Index Terms—automation, cyber exercises, cyber ranges,
Frankenstack, monitoring, NATO Cyber Range, real-time feed-
back, security training, technical architecture

I. INTRODUCTION

Cybersecurity exercises (CSXs) are key to enhancing cy-
bersecurity operator readiness while also improving situation
awareness (SA) in the cyber domain. Crossed Swords (XS)
[1] is an annual interdisciplinary CSX directed at training
participants for responsive cyber-kinetic operations. Although
NATO nations have begun acknowledging the necessity of
both defensive and offensive cyber capabilities, there are
few exercises that tackle such a controversial subject. XS is
organized by the NATO CCD COE in the NATO Cyber Range
and utilizes a hybrid approach between cyber-physical and
simulated infrastructure.

Cyber-exercise-specific SA systems are designed to improve
SA during cyber exercises. While traditional SA systems are
oriented toward cyber defenders, CSX-specific SA systems
have been designed to provide situation awareness feedback
not only to cyber defenders, but all participating teams alike.

CSXs introduce some unique requirements. The exercise
environment must support the SA systems which measure the
performance of participants. It is also important to assess the
learning experience of participants to improve future iterations
of the exercise.

Stealth is an important factor when conducting cyber op-
erations. During XS, the target Blue team (BT) hosts and
networks are closely monitored for any indicators of compro-
mise (IoC) which are then narrated to the training audience for
learning purposes. Since 2016, a small team of cybersecurity
monitoring specialists, the Yellow team (YT) in the exercise
jargon, has been working to develop and improve the real-
time CSX-specific framework known as Frankenstack that
automates the entire cyberattack detection and feedback cycle
for the training audience. The initial version of Frankenstack
was described in our 2017 paper [2]. Since then, XS has been
used as a platform to further develop, test, and validate the
framework. The open-source solution is widely applicable to
any other CSX where standard exercise technical infrastructure
monitoring capability is available.

A. Problem statement

Some of the problems that inspired the creation of the
initial version of Frankenstack were due to issues with the
participants’ learning experience. During the earlier iterations
of XS, the YT feedback sessions regarding detected malicious
activity were presented only at the end of each day. Due to
limited time, these sessions were only able to summarize the
primary observations from that day. This did not suffice as the
technical training audience needed direct and faster feedback
about their actions to pinpoint mistakes as they happened. This
immediate feedback also needed to be adequately detailed
so that the participants could understand how and why a
particular attack was detected.

Additionally, most of the data analysis in YT was done
manually by team members. This was slow and sometimes
inconsistent in how attacks were followed up. Thus, another
objective was to provide uniform feedback that would be clear
and understandable for all participants.

Moreover, since the defending BT in XS is mostly just
passively observing the situation, it often remained unclear
to the participants whether any of their recent attacks would
have affected the security posture of the adversary. While
this reflects experience in the real world, it did not help
participants’ learning experiences during the CSX.

Furthermore, commercial SA systems are often too ex-
pensive to be acquired solely for cyber exercises due to978-1-7281-5684-2/20/$31.00 ©2021 IEEE



license fees, hardware cost, and vendor-specific knowledge.
The proprietary detection logic in commercial tools is often
unavailable which again restricts YT’s ability to understand
and provide meaningful explanations of detected attacks.

Finally, the initial version of Frankenstack was too complex
and involved several overlapping utilities (e.g., syslog-ng and
rsyslog). While each tool had its purpose, the extra multiplicity
rendered the data pipeline difficult to set up and maintain. The
primary aim of the redevelopment was to reduce complexity
and replace the use of many smaller utilities with tailor-made
solutions that are described in this paper.

B. Structure

The remainder of this paper is organized as follows: section
II provides some general background information about the
XS exercise, section III presents an overview of related work,
section IV describes the improvements and the technical
architecture of the newly developed Frankenstack framework,
section V discusses our efforts at providing relevant real-
time feedback and appropriate visualizations for exercise par-
ticipants, section VI briefly outlines the collaboration with
industry partners, section VII defines future work, and section
VIII concludes the paper.

II. EXERCISE BACKGROUND

Crossed Swords is an annual CSX that has been developed
and organized by the NATO CCD COE since 2014. Although
it started out as a primarily technical exercise, it has evolved
into an interdisciplinary cyber exercise that involves technical,
strategic, operational, and legal training aspects. It features a
fictional scenario involving two notional countries, Berylia and
Crimsonia. While most cyber exercises focus on training the
defensive capability for Blue teams, XS reverses the role of the
training audience, who now assumes the role of the Offensive
Cyber Operations (OCO) team that is exercising a responsive
cyber-kinetic scenario. The OCO team must work in close
cooperation to discover an unknown network, complete a set of
challenges, and collect evidence from the network for proper
cyberattack attribution. Under such conditions, attribution,
especially in the cyber domain, is increasingly hard to establish
[3]. Another goal for the OCO team is to stay as stealthy as
possible to avoid being detected by the monitoring stack which
is described in this paper.

To develop and carry out the exercise, multiple teams are
engaged: game network and infrastructure development (Green
team – GT); game scenario development and execution control
(White team – WT); defending team user simulation (BT);
exercise monitoring and situation awareness (Yellow team –
YT); and exercise training audience (OCO team). Note, that
the OCO team was previously referred to as the Red team
(RT), but since XS 2020 the terminology has been updated to
better reflect current policies. Due to the reversed roles of the
participants, the defending BT is actually the adversary that
prompted the OCO team’s responsive action.

Since offensive measures often take place in a cyber-
physical space, the XS scenario portrays this by offering a

variety of challenges that require a diverse set of skills and
effective communication between members of the OCO team.
In addition to physical devices such as programmable logic
controllers (PLCs), IP cameras, radio devices, the exercise
mimics realistic computer networks with a variety of differ-
ent hosts (e.g., servers, workstations, and network devices)
and operating systems. For instance, the networking subteam
is responsible for attacking network services, protocols and
routing; the client-side subteam targets human operators and
attempts to gain foothold in the adversary’s internal network
segments; web experts attempt to compromise web services,
applications and any associated databases; the digital forensics
subteam performs data extraction and artefact collection; and
kinetic forces provide support in operations that require a
kinetic element such as physical surveillance, hardware ex-
traction, forced entry, target capture, etc.

It is important to distinguish XS from capture-the-flag
exercises. The participating subteams are not competing with
one another, but rather serve as dedicated segments of a single
military detachment. The exercise scenario is developed in a
way that all subteams must coordinate their actions and share
intelligence to achieve their objectives and advance in the
exercise environment.

III. RELATED WORK

Research on exercises with an emphasis on offensive opera-
tions (such as XS) is almost non-existent. This is likely due to
the high sensitivity of offensive cyber operations. However,
there is an increasing amount of research based on other
defensive CSXs and work that describes CSX-specific SA
systems. Although not directly applicable in XS, the CSX-
specific elements in those tools could still be considered
relevant.

Känzig et al. [4] sought to detect command and control
(C&C) channels in large networks without prior knowledge
of the network characteristics. They leverage the notion that
while benign traffic differs, malicious traffic bears similarities
across networks. They trained a random forest classifier on
a set of computationally efficient features designed for the
detection of C&C traffic. They verified their approach using
the NATO CCD COE’s Locked Shields exercise datasets.
Results revealed that the if the LS18 Swiss Blue team had
used the system, they would have discovered 10 out 12 C&C
servers in the first few hours of the exercise.

[5] Klein et al. compared two different machine learning
techniques—the unsupervised autoencoder and the supervised
gradient boosting machine—on a partially labelled cyberde-
fense exercise dataset. Both techniques were able to classify
known intrusions as malicious while, surprisingly, also discov-
ering 50 previously unknown attacks.

In [6], Arendt et al. presented CyberPetri, a redesign of the
pre-existing Ocelot SA tool [7] which was used to provide
real-time SA during the 2016 Cyber Defense Exercise and
provide high-level feedback to network analysts based on ex-
ercise target systems’ service availability reports. The authors
note scaling to large datasets as a limitation. The exercise



participants’ feedback revealed that the tool was useful for
the exercise White team for high-level decision making, but
that technical specialists were more interested in improved
exploratory capability for specific events and time windows.

A paper [8] from Henshel et al. proposed a performance
assessment model of human cyberdefense teams and verified
its applicability during the Cyber Shield 2015 exercise. While
exercise data was captured during the game, most of the
analysis was done after the event. For future iterations, the
authors stress the need for real-time analysis of the collected
data to adapt training and assessment methods already during
the exercise. The ability to analyze the collected data was the
primary limiting factor, as operators were not able to keep up
with the huge amounts of incoming data.

Maennel focuses on measuring and improving learning
effectiveness at cyber exercises [9]. This follows work that
was described in the learning feedback section of the initial
Frankenstack publication [2]. Furthermore, a recent paper [10]
by Ernits et al. discusses how technical event logs and metrics
from the exercise game system can be transformed to measure
skills and learning outcomes.

Another publication [11] on team-learning assessment by
Maennel et al. proposes an unobtrusive method based on
mining textual information and metrics from situation reports
submitted by teams during cyber exercises. Since these reports
are regularly filed by Blue teams as a part of the exercise,
this approach would enable gathering relevant information
without disturbing the teams by conducting regular surveys
and questionnaires throughout the exercise.

Chmelař describes the analysis of the XS 2020 exercise data
using the MITRE ATT&CK knowledge base [12] to create
reports of the OCO team progress [13]. Although the reports
were created as a post-mortem analysis, the author proposes
that they could theoretically provide in-game overview and
visualizations during the XS exercise.

IV. FRANKENSTACK

The Frankenstack SA framework features a near real-time
feedback loop for the OCO team participants: any OCO
action that is discovered on the game network and target
hosts is analyzed in the automated data processing pipeline
and if considered malicious is reported back to the feedback
dashboard as an indicator of compromise. This all happens
automatically without any human-interaction from the YT
operators, allowing OCO members to immediately try again to
improve their attack technique to attempt avoiding detection.
Naturally, YT is still present to continuously improve the
detection capability, reduce false positive alerts, and make sure
the entire framework works as intended.

The framework also provides information about partici-
pants’ progress to the exercise leadership allowing them to
control the pace of the scenario more precisely. Figure 1
illustrates Frankenstack’s technical architecture and various
data flows in the exercise environment.

A. External data sources

Frankenstack requires multiple external data sources for
its operation: full network traffic mirror, event logs, network
configuration information, and the host asset database.

1) Network packet capture: Receiving a network traffic
mirror is crucial for network security monitoring components.
The mirrored network traffic was provided via a GRE (Generic
Routing Encapsulation) tunnel from the virtual switches in
the VMware NSX Data Center software-defined networking
solution. Capturing traffic from virtual switches instead of
edge routers meant that Frankenstack’s IDS component (i.e.,
Suricata [14]) also had visibility in internal network segments,
not just traffic that was traversing between network routers
and perimeter firewalls. All traffic was captured and indexed
using the Arkime full packet capture and analysis tool which
was later used by the YT operators to extract new IoC
samples directly from the indexed PCAPs to improve existing
detection capability [15]. Note, that Arkime was re-branded
from Moloch in November 2020.

2) Event logs: We collected event logs from the in-game
(gamenet) systems wherever possible (e.g., Event Logs from
Windows, Apache and nginx web server logs, and syslog
from Linux). Windows Event logging was extended with
additional rules for Microsoft Sysinternals Sysmon [16] from
public GitHub sources [17], [18]. Instead of implementing
AppArmor and SELinux for enhanced Linux auditing, we
opted to use a small library called Snoopy Logger [19].
This was because configuring AppArmor or SELinux typically
involves increasing the base level of security on the system.
However, we did not want to interfere or impair any of the
pre-configured vulnerabilities that were planted on the target
systems.

Such host instrumentation is difficult to sustain in a standard
defense-oriented CSX with BTs as the training audience. If the
aim is to give BTs full control of their gamenet infrastructure,
then it is difficult to ensure that BTs do not disable or
reconfigure these tools. However, as the XS training audience
is the OCO team, then YT could maintain supervisory control
of all BT systems and ensure a constant stream of event log
data.

3) Asset collection: Another critical piece of information
is up-to-date knowledge about various network configurations
and hosts in these networks. Since this is highly specific to
the exercise and the underlying technical infrastructure, we
developed a custom script that extracts this information from
the Cyber Range provisioning API and the VMware vSphere
API. While the provisioning API contains the information
about how networks and hosts should be configured when
they are deployed by Ansible [20], it lacks any knowledge of
changes introduced after the initial deployment. Therefore, the
list of all provisioned hosts and any static IP information can
be easily collected from the provisioning API. However, if a
host has been configured to obtain an IP address using DHCP,
then the actual IP address must be retrieved from the machine
during runtime. IPv6 link-local addresses are also assigned
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Fig. 1. XS technological perspective. Green area marks data sources originating from the exercise backend infrastructure, i.e., Green team assets (described in
sections IV-A1 and IV-A3). Blue area indicates tools and data sources deployed on BT hosts and networks (described in section IV-A2). Black area displays
partner tools (described in chapter VI). Yellow area illustrates Frankenstack components and the data flow between them (described in IV-B, IV-C and IV-D).
YT Dashboards and visualizations are described in chapter V. Red nodes represent novel contributions developed solely by the authors of the paper.

dynamically. The script periodically collected the most recent
IP information from all hosts using the vSphere API.

When information is gathered, we establish an asset profile
for each known host in the exercise environment. Among
other information, this profile maps all known IPv4 and IPv6
addresses to a particular host. This is key because when
it comes to correlating events from multiple data sources,
Frankenstack aims to be agnostic as to whether it has to match
a hostname (e.g., from event logs) or on an IP address (e.g.,
from an IDS alert). This problem is something that many
network monitoring solutions struggle with because it is not a
trivial task to associate IPv4 and IPv6 network sessions even if
they originate from the same host [21]. Trying to combine IDS
alerts and event logs complicates things even further. For this
reason, we attempt to enrich all events with an asset host name
as a common identifier for all subsequent event correlation.

B. Distributed event streaming

The initial design of the event processing pipeline described
in [2] relied primarily on Syslog-ng [22] to collect, store and
forward events. This works well for systems and applications
that are set up and configured beforehand so that proper syslog
rules can be created. However, during the annual hackathons
that precede the XS event, contributing partners in the YT
would often need to integrate their own tools and scripts that
needed to analyze the same incoming data feeds or a subset
of past events to provide an alternative assessment to the main

data processing pipeline. Having events stored as files on the
central log collection server is not ideal for this. Alternatively,
Elasticsearch [23] can be used to query historic data, but there
is no good way to re-stream all incoming events in real time.

We analyzed various distributed message streaming tools
(e.g., RabbitMQ and ZeroMQ) but opted for using Apache
Kafka [24] as a central collection point for all emitted mes-
sages. Kafka fulfils the requirement for a multi-producer and
multi-consumer event feeds. The general design concept in
the Frankenstack framework is that all new events should be
produced to Kafka and for any further processing, tools should
consume the corresponding events from Kafka. Therefore,
Kafka always has all the information and relevant stages of
the data analysis processes.

C. Data processing components

Postmortem analysis of available datasets is an irreplaceable
method during incident analysis. Although it often gives
valuable insight about cyberattacks, it requires a substantial
amount of time and manual work. Unfortunately, this conflicts
with the short time span of the XS exercise and is not a viable
method to keep track of the training audience. Frankenstack
processes structured input data that has been sent to Kafka
and applies event normalization, enrichment, and correlation
for combining various information sources into a single stream
of meaningful events.



All relevant event streams in Frankenstack have been
configured to output structured JSON events at the source
or to be transformed into JSON during the pre-processing
phase. Unfortunately, the JSON events emitted by distinct
sources feature varying structure which has to be individually
handled for every input. Until 2019, Frankenstack employed
SEC [25] as the primary data normalization, enrichment,
and correlation tool. Bearing in mind that SEC and its rule
language was initially designed for complex event correlation
tasks on unstructured messages, it soon became difficult to
handle complex nested JSON data structures in the SEC rule
language. For example, any changes in input JSON key values
resulted in the need to edit numerous textual rules. Therefore,
instead of using the conventional SEC rule syntax, we had
to write Perl code snippets into most FrankenSEC rules [26].
Although it was possible to accomplish what we required using
custom Perl functions, the rule writing and management soon
became infeasible to maintain.

Alternatively, processing complex nested data structures in a
fully-fledged programming language seemed more approach-
able. In hindsight, our primary issue was that we attempted to
correlate events too soon in the data processing pipeline—SEC
is an event correlation tool, not a programming environment
or a data normalizer. Unfortunately, in our ruleset we tried to
accommodate many of the data processing and transformation
tasks which should have been completed prior to sending
events into SEC. This significantly hindered the SEC event
correlation rule-writing process. The lack of proper post-
processing meant that even minor changes in the input event
structure resulted in the need to rewrite a large portion of the
rules.

In the initial version of Frankenstack we had to integrate
multiple logging tools (e.g., Syslog-ng, Rsyslog [27], and
Logstash [28]) and custom scripts to implement a CSX-
specific data normalization and enrichment tool. Configura-
tions to process and route the event stream became overly
complex as no single tool was readily able to satisfy all
requirements. As a replacement we developed a novel data
normalization and enrichment tool called Peek [29]. A fully
customizable tool reduced this overhead significantly—we had
to maintain only one tool which was fully under our control.
Peek was able to replace generic log processing and event
routing tools such as Logstash and Syslog-ng within our
framework, albeit only for our particular exercise use-case.

The FrankenSEC ruleset was replaced by the Sigma ruleset
[30] in XS 2020. Sigma is an open-source project that has
gained a wide support and adoption from the information
security community in the past few years. The project defines
a simple rule structure in YAML format. Sigma does not do
any pattern matching or alerting by itself. Rather, it acts as a
technical translation layer and IoC sharing format. See Listing
1 for an example sigma rule that we developed for detecting
base64 encoded scripts being executed in Windows machines.
The rule triggers if the string ’ -FromBase64String ’ is detected
within the ScriptBlockText field of a Windows Event.

Since Frankenstack aims to be vendor-agnostic, we built a

Listing 1. Sigma rule to detect base64 encoded PowerShell scripts.

t i t l e : Encoded S c r i p t B l o c k Command I n v o c a t i o n
a u t h o r : Mauno P i h e l g a s
d e s c r i p t i o n : D e t e c t s s u s p i c i o u s P o w e r S h e l l i n v o c a t i o n

command p a r a m e t e r s
d e t e c t i o n :

c o n d i t i o n : s e l e c t i o n
s e l e c t i o n :

win log . e v e n t d a t a . S c r i p t B l o c k T e x t :
− ' − FromBase64St r ing '

f a l s e p o s i t i v e s :
− P e n e t r a t i o n t e s t s
− Very s p e c i a l P o w e r S h e l l s c r i p t s

f i e l d s :
− win log . e v e n t d a t a . S c r i p t B l o c k T e x t

i d : 697 e4279 −4b0d −4b14 −b233 −9596 bc1cacda
l e v e l : h igh
l o g s o u r c e :

p r o d u c t : windows
s e r v i c e : p o w e r s h e l l

s t a t u s : e x p e r i m e n t a l
t a g s :

− a t t a c k . e x e c u t i o n
− a t t a c k . d e f e n s e − e v a s i o n
− a t t a c k . t1059 . 0 0 1

custom real-time rule matching engine in Go [31] that uses
Sigma rules. That engine is built as separate module and is
publicly available in GitHub [32]. A detailed description and
benchmarks of our Sigma rule engine are available in our
recent whitepaper [33].

The interface to the OCO feedback dashboards was ac-
complished with a comprehensive Python post-processing and
event shipping module which ensured that all processed events
sent to the dashboards (i.e., Alerta [34], ATT&CK Navigator
[35] and Kibana [36]) conformed to a uniform structure
and were mapped to the MITRE ATT&CK adversary tactics
and techniques knowledge base. This post-processing script
also implemented a simple baselining functionality to identify
security events that occur under normal system use (e.g.,
execution of scheduled tasks, system updates, etc.). Later,
during the exercise, such events were automatically filtered and
not displayed on the dashboards. The same post-processing
tool can be leveraged to easily create additional filters to
suppress benign or false positive events which may occur
during the exercise.

During the three days of XS exercise in December 2020,
the Frankenstack framework received a total of 673,225 input
security events. 85% of those were from Windows machines
which are highly verbose, especially with the added Sysmon
logging rulesets. The remaining 15% were logs emanating
from Linux machines and Suricata IDS. To reiterate, manual
inspection of such a large number of events for providing
near real-time feedback to exercise participants would prove
extremely difficult. Therefore, automated event processing
steps such as filtering, correlation, and deduplication are of
key importance within Frankenstack.

D. Determining the attacker

There is one crucial element that has to be determined
for every event before submitting it further—the attacker and



victim assets. To reiterate a problem from the early days of
Frankenstack development, one primary concern the YT faced
was automatically determining the direction of the attacks,
i.e., identifying the victim and the attacker in a particular
cyberattack. With Suricata IDS alerts, relying on the source
and target fields does not yield an expected result—the source
and target fields in IDS rules just signify the direction of traffic
for which the detection match conditions are written. This
meant that whenever the rule writers had written a rule that
detects a response of an attack (e.g., sensitive data leaving the
victim node), we would have erroneously classified the victim
as the attacker. With this approach, we could only connect the
relevant nodes, but lacked the directionality between them.

Fortunately, one of the core Suricata developers had been
part of YT since 2016. He escalated this issue and for the fol-
lowing XS iteration there was a preliminary fix available. An
improved solution has now been adopted into the mainstream
version of the Emerging Threats (ET) rules [37]. ET rules now
contain a metadata field called attack target, which reveals
the victim-side counterpart of the attack. Currently there are
approximately 15,000 rules which contain the attack target
metadata keyword. This development has been presented at
security conferences such as Hack.Lu [38] and SuriCon [39].

Peek now uses those keywords and enriches each atomic
message with metadata to determine event shipper and, if
applicable, proper event source and attack target. Our exercise
asset collection tool enables us to build an asset database for
threat hunting and map individual addresses from alerts to
known assets. Source and destination information is inserted
to every message metadata, along with event directionality flag
(i.e., inbound, outbound, lateral, or local). The post-processing
script is then able to process metadata-enriched messages and
report affected assets to the feedback dashboards.

V. VISUALIZATIONS

During XS, numerous large screens are installed in the
training room directed at the OCO team. Their purpose is to
provide visual feedback from various tools taking up any of
the valuable screen real estate from the training audience.

Frankenstack comprises a set of open-source tools for
visualizing log data, time-series metrics, and alerts. There
are slight differences in handling various types of alerts: for
example, alerts for CPU and memory usage trigger and recover
automatically based on a predefined set of thresholds, while
security events (e.g., IDS/IPS alerts) are only triggered based
on some detection condition but lack the concept of a recovery
threshold. Thus, such security alerts will never receive a
recovery event, leading to an overabundance of information
on the central dashboard. This requires special handling and
conditions for timing out stale alerts.

Correlation and deduplication of recurring events is crucial
for creating useful visualizations. Due to the volatile nature
of CSXs, visualization tools can overflow with too much
information for users to follow. For example, a network scan
using the nmap tool can trigger a large amount of security
events over a short period of time. While event correlation

can collect and continuously combine those events, it should
not wait indefinitely for the scanning to end before emitting
the alert to the dashboard. The aim is to notify the OCO
of their activity as it happens. Therefore, the length of the
correlation window must be kept relatively short. With an
effective deduplication functionality, sending the same alert
multiple times does not cause any issues.

Alerta [34] is used as the primary feedback dashboard to
present any malicious activity to exercise participants. The
entire feedback cycle is completed by emitting the enriched
event from the correlation engine to the Alerta dashboard.
Each OCO team member has access to the Alerta API and
web interface to create personal filtering rules for limiting the
displayed information only to what is relevant in the current
stage of the attack. We set a timeout to automatically archive
stale events that had no correlated activity in the last 15
minutes to avoid flooding the dashboard with events.

Kibana [36] was used to present analytical dashboards that
provided insight over the entire duration of the exercise, not
just the recent events view available in Alerta. The information
included a summary of detected attack types and statistics of
IP addresses that have been generating the most alerts. The
dashboards on the large TV screens were often observed by
WT members who were more interested in the progress of the
exercise and overall performance of the training audience.

We also mapped all feedback events to the MITRE
ATT&CK framework attack phases and techniques. This en-
abled us to integrate the MITRE ATT&CK Navigator applica-
tion to our environment and visualize the security events the
OCO team had triggered to attack the target BT environment.

VI. TESTBED FOR VENDOR APPLIANCES

Although Frankenstack has been kept open source, we have
not denied cooperation with existing security platforms, SIEM
systems, or commercial vendor appliances. Over the years
several security vendors (e.g., Cymmetria [40], Greycortex
[41], and Stamus Networks [42]) have joined the exercise
YT to test their commercial products in a unique live-fire
environment. We do not treat any proprietary security product
as a component of Frankenstack, but rather as another mon-
itoring data feed that can provide a different perspective into
the exercise dataset.

VII. FUTURE WORK

Several issues have remained a challenge. For example, to
assess the progress of the OCO team more systematically,
their attack campaigns would have to be incorporated into
the exercise scenario itself. The exercise scenario and time-
line would also have to be available in a machine-readable
format so that Frankenstack could follow exercise progress
and potentially adapt to non-technical scenario changes that
take place as part of the storyline (e.g., dynamically adjust
the level of detail provided within the feedback based on the
participants’ progress in the campaign).

More advanced visualizations are required for the exercise
training audience and organizers to better follow the partici-
pants’ progress at a higher level. The focus of Frankenstack



has been on technical feedback rather than information that
would provide actionable SA for higher-level decision makers.
We attempted this with EVE [43] but faced the problem of
revealing too much information too early in the game, which
unfortunately limited its usability during the exercise.

VIII. CONCLUSION

The paper outlines the new developments of the cyberat-
tack detection and feedback framework, Frankenstack. This
open-source cyber-exercise-specific framework is based on a
combination of various open-source monitoring tools. The
primary purpose of Frankenstack is to provide detection of
malicious activity and fully automated real-time observations
during cyber exercises where the emphasis on training the
offensive skillset.

The work describes the updated technical architecture com-
pared to an earlier version of the framework. Furthermore,
improved data processing, distributed event streaming, and
feedback dashboards are described. Since 2017, we have
implemented and verified the performance of our framework in
the annual NATO CCD COE’s Crossed Swords cyber exercise.
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[10] M. Ernits, K. Maennel, S. Mäses, T. Lepik, and O. Maennel, “From
Simple Scoring Towards a Meaningful Interpretation of Learning in
Cybersecurity Exercises,” in 15th International Conference on Cyber
Warfare and Security (ICCWS 2020), March 2020.

[11] K. Maennel, J. Kim, and S. Sütterlin, “From Text Mining to Evidence
Team Learning in Cybersecurity Exercises,” in Companion Proceedings
10th International Conference on Learning Analytics and Knowledge
(LAK20), March 2020.

[12] The MITRE Corporation, “MITRE ATT&CK,” Available: https://attack.
mitre.org/, 2021.
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[43] F. J. R. Melón, T. Väisänen, and M. Pihelgas, “EVE and ADAM:
Situation Awareness Tools for NATO CCDCOE Cyber Exercises,” in
STO-MP-SCI-300 Cyber Physical Security of Defense Systems, 2018,
pp. 10–1–10–15. [Online]. Available: https://ccdcoe.org/uploads/2018/
10/EVE-ADAM-MP-SCI-300-10.pdf


