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Abstract: The globalisation and increasing complexity of modern cyber security 
operations have made it virtually impossible for any organisation to properly 
manage cyber threats and cyber incidents without leveraging various collaboration 
instruments with different partners and allies. This is especially relevant in certain 
areas of national security, like the protection of critical infrastructures, where the 
partnership amongst public and private sectors is paramount to adequately protect 
those infrastructures from emerging threats.

Over the last years consensus has emerged that sharing information about threats, 
actors, tactics and other cyber security information will play a central role in 
deploying an effective cooperative cyber defence. Near real-time information 
sharing has recently gained momentum as a means to redress the imbalance between 
defenders and attackers. In practical terms, the majority of current efforts in this 
area revolve around the idea of developing infrastructures and mechanisms that 
facilitate information sharing, notably through standardization of data formats 
and exchange protocols. While developing and deploying such an infrastructure is 
certainly essential to solve the problem of “how” to effectively share information, 
we believe that some key aspects still remain unaddressed, namely those related to 
deciding on “what” to share, “with whom”, “when”, as well as reasoning about the 
repercussions of sharing sensitive data.

In this paper, we argue that effective policies for near real-time information sharing 
must rely on, at least, two pillars. First, formal models to estimate the subjective value 
of the information shared should be developed. Second, trust/reputation models that 
consider the dynamic behaviour and changing factors of the sharing community 
have to be identified. For the latter, we propose to model information sharing 
communities as directed graphs, with nodes representing community members and 
edges modelling sharing relationships among them. Relevant properties of both 
nodes and edges are captured through attributes attached to each of them, which 
subsequently facilitate reasoning about particular data exchanges. 
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1. INTRODUCTION
Cyber conflicts are intensifying at a steady pace, both in prevalence, complexity 
and potential impact on individual organisations, nations, and the society at large. 
Besides, they have largely gone global, and globalisation has brought about a number 
of complications to cyber defence operations. On the one hand, interdependences 
amongst networks and information systems make localised and uncoordinated 
countermeasures rather ineffective, as they cannot ensure that no weak links are 
left in the chain. On the other hand, the attack landscape has evolved considerably 
in the last years, with a substantial rise in attacks involving a large number of 
distributed entities (e.g., botnets and DDoS) [1]; the emergence of markets where 
zero-day vulnerabilities are bought and sold on a regular basis [2]; or the advent of 
remarkably complex pieces of malware and cyber weapons [3][4][5], to name just a 
few. One major consequence of this new state of affairs in cyber security is a serious 
imbalance between the capabilities of attackers and defenders. As a matter of fact, 
at the moment it is virtually impossible for any organisation to prepare for and 
respond to cyber incidents without leveraging various collaboration instruments 
with other partners and allies. Examples abound in some areas of national security, 
such as the protection of critical infrastructures, where partnerships amongst public 
and private sectors are paramount to adequately mitigate risks and manage cyber 
attacks.

Over the last years consensus has emerged that sharing information about threats, 
actors, tactics and other cyber security information will be key to succeed in cyber 
defence. This sentiment has certainly not emerged from one day to the next, as 
proved, for example, by the efforts conducted over the last decade or so to categorise 
cyber security information, standardise data formats and exchange protocols, and 
develop infrastructures and mechanisms that facilitate sharing (see, e.g., [6] or the 
Cyber Defense Data Exchange and Collaboration Infrastructure (CDXI) being 
built by NATO [7]). While this is clearly essential to solve the problem of how 
to effectively share, some other relevant dimensions of the problem have received 
far less attention, notably those related to deciding on what to share, with whom, 
when, as well as reasoning about and adapting to the repercussions of sharing. One 
plausible cause for this is the fact that cyber security information sharing has largely 
been –and still is– a human-driven activity, where decisions are made one at a time 
and, in many cases, without an explicit elucidation of the rationale that motivates 
the decision. We believe, however, that addressing most of these questions will 
eventually become vital, particularly for scenarios where prompt responses to cyber 
threats are mandatory and, therefore, sharing decisions need to be made on a policy 
basis, in near real time, and with very little human involvement.

In this paper, we argue that the problem of sharing cyber security information can 



be reformulated as one of risk-based decision-making. Thus, we seek procedures 
to answer questions such as: what are the benefits and the risks of sharing right 
now this piece of information with such party? Our choosing of this approach is 
motivated by two main facts:

a. On the one hand, taking an algorithmic approach on sharing will force us to 
quantify factors such as risks (and, implicitly, the value of information) and 
trust on sources and recipients. Even though these are challenging issues, 
a body of work in other contexts is slowly emerging. We believe that the 
cyber security community should adapt and adopt some of these techniques, 
particularly in scenarios where there is a need-to-share but the risks of doing 
so are not properly managed. 

b. On the other hand, policies for information sharing must be elucidated and 
formally analysed. But policy making is a complex issue, and a given set of 
rules might well have unforeseen consequences, hence the need for automated 
techniques that provide optimal responses.

However, the ability to automatically making sharing decisions requires reasoning 
over formal structures (models) of most of the relevant elements involved, including 
the information itself, its value, the risks associated with disclosure (not only by 
us, but afterwards by partners receiving the information, either inadvertently or 
on purpose), our perception of the sharing community and the relationships among 
partners, etc.

In the remaining of this paper, we attempt to elucidate some of these questions, 
discuss challenges and identify areas where more efforts are needed. In Section 2, 
we review a number of research lines where problems similar to those appearing in 
this domain have been explored for a number of years. In Section 3 we formalise 
sharing communities as graphs and reformulate some key properties of partners 
and exchanges among them in graph-theoretical terms. This allows us to define 
sharing policies as algorithms running at each node. Section 4 develops the basis for 
a network-based model of cyber security information. Building upon the formats 
already developed, we point out the need for richer models where individual pieces 
of information can be annotated with labels reflecting, for example, our perception 
of its value or the trust we have on it being true. Moreover, connections among data 
need to be construed and made explicit, offering a view of an information network 
rather than a (more or less structured) list of items. In Section 5 we propose and 
discuss a risk-aware sharing algorithm. Section 6 concludes the paper by pointing 
out open problems and some lines of work that we are currently exploring.



2. RELATED WORK
In this section we review a number of research areas connected with the general 
problem of cyber security information sharing. In some cases, the connection is 
straightforward, although related to very concrete problems; in others, challenges 
similar to those appearing in this domain have been approached with techniques 
that might prove useful if conveniently adapted.

A. STRUCTURED MODELS OF CYBER SECURITY 
INFORMATION

As a discipline, cyber security deals with heterogeneous information related to 
the assets and configurations present in a system; the threats and tactics used by 
attackers; indicators of on-going incidents; countermeasures applied to mitigate 
risks; etc. Over the last decade, considerable efforts have been devoted to 
categorise such information and standardise data formats and exchange protocols, 
most notably through the Making Security Measurable (MSM) [6] initiative led 
by MITRE. Key aims of MSM include “improving the measurability of security 
through registries of baseline security data, providing standardized languages as 
means for accurately communicating the information, defining proper usage, and 
helping establish community approaches for standardized processes.”1

MSM presents a comprehensive architecture for cyber security measurement and 
management, where current standards are grouped into processes and mapped 
to the different knowledge areas. Current MSM standards can be grouped into 
6 major knowledge areas, each of which refers to a process (put in parentheses): 
Asset definition (inventory); Configuration guidance (analysis); Vulnerability alerts 
(analysis); Threat alerts (analysis); risk/attack Indicators (intrusion detection); and 
incident Report (management). MSM standards and knowledge areas. Table I 
relates current MSM standards to these areas2:

1 See http://measurablesecurity.mitre.org 
2 We refer the reader to Appendix A for a description of MSM’s acronyms, and to MSM’s main website for 

further details.



Table I. MSM standards and knowledge areas.
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In the near future, it seems quite plausible that information sharing activities will 
be supported by infrastructures and mechanisms based on these standards, either in 
their current form or in subsequent revisions and developments.

B. COLLABORATIVE ATTACK DETECTION SYSTEMS

Many cyber attacks can only be detected by gathering and correlating evidences 
obtained at different locations [8]. In some cases, such evidences may come from 
sources unavailable to us and over which we have little control. This is, for example, 
the case of organisations that choose to share information about detected security 
events, possibly in near real-time, so as to minimise risk exposure or the impact of 
on-going cyber attacks. The so-called Collaborative Intrusion Detection Systems 
(CIDS) [9][1] constitute a clear example of the benefits that information sharing can 
offer to modern cyber defence capabilities. In principle, they have the potential to 
detect attacks that affect different Internet networks by correlating attack alerts. 
Besides, they also could reduce the costs involved in attack detection by sharing 
intrusion detection resources among networks.

CIDS consist of multiple distributed detection units logically organised in a 
network topology. In centralised systems, such as DIDS [10], DShield [11] and 
NSTAT [12], each sensor shares alerts with a central correlation unit. Hierarchical 
approaches (e.g., GrIDS [13], EMERALD [14] and DSOC [15]) attempt to address 
the scalability issues of centralised approaches by organising detection units into a 
tree-like topology. Finally, fully distributed approaches such as DOMINO [16] or 
the one proposed in [17] work in a P2P fashion, with nodes participating in a periodic 
exchange of information. We refer the reader to [1] for a more comprehensive 
account of existing CIDS technology.

Unfortunately, CIDS involving different partners are rare nowadays, as organisations 
are particularly reluctant to share sensitive information with almost any other actor. 
Apart from privacy issues, trust plays an important role in CIDS too. In most cases, 
the overall detection accuracy depends on all parties exhibiting honest behaviour, 



particularly in terms of the trustworthiness of reported alerts. These issues are 
ignored or inadequately addressed in existing CIDS, in part because most of them 
were not conceived for an information sharing setting involving multiple and 
heterogeneous organisations.

C. TRUST AND REPUTATION MANAGEMENT SYSTEMS

In many fully distributed applications there is often a lack of a central authority in 
charge of monitoring users and reporting about their behaviour. In these scenarios, 
users often have to make decisions about who to trust for certain tasks (e.g. selecting 
routes in a MANET). Trust and reputation management systems have proliferated 
lately as a potential solution to this problem. Roughly speaking, these systems are 
based on the principle that users might quantify other users’ behaviour by collecting 
and aggregating recommendations referring to past interactions with them. The 
interested reader can find surveys of trust systems in [18][19][20].

Possibly the central rationale underlying the utility of trust and reputation systems 
is that the behaviour exhibited by an entity in the past can be used to predict the 
expected outcome of future interactions. For cyber security information sharing 
scenarios, we anticipate that trust and reputation will play a key role in tasks such 
as deciding on whether to share some information with someone or not, or assessing 
the reliability and accuracy of pieces of data coming from questionable sources 
(e.g., using the aggregated value of previous data provided by one party as proxy for 
the a priori value of future information).

D. FLEXIBLE ACCESS CONTROL MODELS BASED ON RISK 
ESTIMATES

Imposing restrictions on sensitive information flows is a long-established problem 
in computer security. Traditional models of multi-level security, such as Bell-La 
Padula [21], deal with this problem by associating security clearances with subjects, 
security classifications with objects, and providing clear decision rules as to whether 
an access request should be granted or not. However, such mechanisms encode for 
a pre-determined calculation of risks and benefits, and in many modern situations 
preclude effective operations that can be justified on a risk basis when the specifics 
of the context are taken into account. The JASON Report [22] raised concerns 
about the inability of many organisations, particularly those in the national security 
and intelligence arena, to rapidly process, share and disseminate large quantities 
of sensitive information, in part due to the inflexibility of current access control 
models. Even worse, organisations are increasingly resorting to ad hoc means to 
surpass these restrictions, such as granting temporary authorisations for high-



sensitive objects or, as mentioned in [22], to follow the line of the old saying “it is 
better to ask for forgiveness rather than for permission.”

Motivated by these issues, a number of works have proposed in the last years 
more flexible access control models based on an explicit quantification of the risk 
associated with every access request. For example, FuzzyMLS [23] replaces the 
classical binary allow/deny decision in BLP by a risk estimate that extends BLP 
rules to a continuous case. In [24], the model is extended to support uncertainty in 
security labels and clearances, and to account for the time dimension of sensitivity. 
Works in this area have proliferated in the last years, with a variety of proposals, 
including risk-based access control built on fuzzy inferences [25]; attribute-based 
risk-adaptive models [26]; role-and-risk based models [27]; benefit and risk access 
control [28]; and many others. Although the majority of these works explicitly target 
the particularities of information sharing settings, to the best of our knowledge 
none addresses cyber security information sharing.

3. A FORMAL MODEL OF INFORMATION 
SHARING COMMUNITIES

A. COMMUNITY STRUCTURE

We represent an information sharing community as a weighted directed graph  
(digraph) G = (V, E), where V is the set of nodes or vertices that represent the 
entities that are member of the community, while E is the set of the edges or links 
that represent the information flows permitted within the community. For each edge 
e = (u,v) = uv, we denote by e-1 = vu = (v,u) its inverse, if it exists.

In information sharing terminology, u corresponds to an originator of information, 
while v is a recipient of information. Therefore, edges restrict not only the members 
that may share information amongst them but also who distributes the information 
within the community and with whom. Please note that the originator does not 
necessarily correspond to the source of the information. The latter is the entity 
that produces an item of information. As the source does not need to be a member 
of the community, for simplicity we do not consider them in our model. Thus, an 
originator u that shares information with a recipient v can transmit information 
produced on its own (i.e. u is the source as well), forward information received from 
other nodes (i.e. u behaves as a forwarder of information), or both.

A graph that permits multiple edges between nodes is called a multigraph. We 
generalize the representation given above for an information sharing community to 
formally include the multigraph notation: 



G= (V, Ε,Ψ)

where E = {e1, e2, …, em} is a set of symbols representing the edges of the graph, 
and Ψ: E  E(V) is a function that attaches an ordered pair of nodes to each e ∈ E: 
Ψ(e) = uv, u and v being nodes.

In our digraph (information sharing domain), if Ψ(e1) = Ψ(e2), then e1 = e2. As a 
digraph has directed edges, two different edges that have the same ends (e.g. uv, vu) 
must have a different predecessor node (originator). In other words, the direction of 
each edge must be opposite to the other. This restriction conditions the structure of 
the multigraph, as there cannot be two equally directed edges between two nodes 
u and v. We do not consider loops (edges with ends uv / u = v) either, as sharing 
information with oneself is given per se.

It should be noted that the graph representing an information sharing community 
may contain cycles, and this will depend solely on the community structure.

B. LINKS BETWEEN NODES

Definition 1. Let ei = uiui+1 ∈ E for i ∈ [1,k]. The sequence W = e1e2e3…ek is a walk 
of length k from u1 to uk+1. It should be noted that ei and ei+1 must be adjacent ∀ i ∈[1, 
k-1]. For simplicity, we write W: u1  u2  u3  …  uk  uk+1 or W: u1 ∼n uk+1 to 
represent a walk of length n from u1 to uk+1.

Definition 2. A walk W = e1e2e3…ek: u ∼ v is a directed walk, if ek ∈ E, ∀ i ∈ 
[1,k], u ∈ e1 is the originator of information and v ∈ ek is the latest recipient of the 
information. A directed path P:u1  uk  is a directed walk where ui ≠ uj, ∀ i ≠ j. A 
directed cycle is a directed path where u1 = uk+1.

We consider that one of the next four possibilities can occur in an information 
sharing community between any two indistinct nodes (u, v):

(1) there is no directed path that connects u and v, and therefore they cannot share 
information between them, neither directly nor indirectly. 

(2) there is no edge that connects u and v, that is, there is no direct connection 
between them. However, they could share information using a directed path that 
connects them indirectly (e.g. W: u  w  v).

(3) there is a directed edge from u to v or from v to u. 

(4) there are two directed edges that connect both nodes, being u and v both 
originators and recipients of information.



Definition 3. Two nodes are unconnected if there is no directed edge or path that 
connects both nodes. Two nodes are strongly connected (adjacent) if there is a 
directed edge that connects them independently of the edge direction. Finally, two 
nodes are weakly connected if there is a directed path that connects them but where 
there is no directed edge between them.

C. TYPES OF NODES

We classify the nodes in a community using the indegree (deg-(u)) and outdegree 
(deg+(u)) properties of a node, which specify the number of head and tail endpoints, 
respectively, adjacent to a node. Formally:

deg−(u) = |{e ∈ G / e =xu}|

deg+(u) = |{e ∈ G / e =ux}|

In graph theory, the node with deg-(u) equals zero is called a source, while a node 
with deg+(u) equals zero is called a sink. In our information sharing community 
scenario, we identify three types of nodes, two of them according to the balance 
between their indegrees and outdegrees. Let Ω be the difference between deg-(u) 
and deg+(u) of a node n.

Ω(u) = deg−(u) − deg+(u)

Definition 4. We say that a node u ∈ V is a distributor if Ω(u) << 0, and Ω(u) ∈ 
Ν- (negative integers). A distributor is expected to receive information from a few 
originators and provide information to many recipients. 

Definition 5.  We say that a node u ∈ V is a collector if Ω(u) >> 0, and Ω(u) ∈ 
Ν+ (positive integers). A collector is expected to receive information from many 
originators and provide information to few recipients. When deg+(u) = 0 (sink), the 
information received by the collector is not further shared with other community 
members.

On the other hand, we use the betweenness centrality property to define the third 
type of node in a community. The betweenness quantifies the number of times a 
node is part of the shortest path between two other nodes. This provides a measure of 
the relevance of that entity within a community in terms of presence in information 
sharing routes. Given a connected graph G with a weight function α: E  Ν, the 
shortest path between two nodes u and v ∈ G is the path P with the minimum total 



weighted distance between u and v:

dα
G(u, v) = min{ ∑ e∈P α(e) / P: u ∼ v}

Thus, the betweennes centrality Cb(u) of a node u is given by

Cb(u) = ∑r≠k≠υ σr,k(u) / σr,k

where σr,k(u) is the number of shortest paths between any two nodes r and k ∈ V that 
pass through u, and σr,k is the total number of shortest paths between any two nodes 
r and k ∈ V. For example, in a centralized sharing approach (e.g. an Information 
Sharing and Analysis Center), the central node has values of betweenness much 
higher than any other node of the community, while sources and sinks are expected 
to have a zero betweenness centrality.

Definition 6. We say that a node u ∈ V is a bridge if its betweenness centrality Cb(u) 
has a value higher than the arithmetic mean of all nodes of the graph G.

u is bridge ↔ Cb(u)  >  Cb(v)/|V|, ∀ v ∈ V

Figure 1 exemplifies the properties described above.
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Figure 1. A graph example. The pair of numbers associated with each node indicate the indegree 
and outdegree values. Node n2 is a distributor, while nodes n3 and n5 are collectors. 
Node n6 is the only node that is part of a shortest path between two other nodes of the 
graph (i.e. path between n4 and n5), and thus, is the only one that complies with the 
bridge definition given above.



D. RISK ASSESSMENT FUNCTION

The edges of the graph have a weight that, in our case, is a richer concept than 
traditional edge weights. For cyber security information sharing communities, we 
add metadata to each edge that represents a function that calculates the risk level to 
which the originator of the information is exposed if certain piece of information is 
shared with certain strongly connected recipient. 

In our scenario, we propose a simple formula for defining the risk to which a 
node is exposed when sharing information. It basically depends upon two well-
differentiated factors that have played a key role in well-recognized risk assessment 
methodologies:

• First, the value of the information shared, and thus the impact caused on 
the entity (originator node) in the case that such information is accessed by 
unauthorised entities. We address this point later in Section 4, including those 
cases where the value of information varies over time [24].

• Second, the probability that such information is accessed by unauthorised 
entities (any node in the graph).

For the impact, its value strongly depends on the particularities of the originator, the 
information shared, and other contextual information. 

It should be noted that the quantification of both the impact and the probability 
values is a difficult task whose precise estimation is generally impossible, as the 
knowledge required to do so is incomplete. For instance, the calculation of the 
probability of occurrence may be improved using intelligence obtained from the 
terrain (e.g. OSINT, HUMINT, trends, market analysis, etc.), but, unfortunately, 
we usually end up with a rough estimation that will be substantially different to the 
underlying reality. Notwithstanding, this problem is out of the scope of the present 
paper, and thus we do not question the trustworthiness of these values when used 
in our formulae. 

Definition 7. Let u ∈ V, and δ be a piece of information originated by u. We define 
Ι(u, δ) ∈ [0, 1] as a measure of the impact on u caused by an unauthorised access 
to δ.

On the other hand, a node u may not be able to estimate the second factor above 
(the probability), especially when the recipient can further share this information 
with third nodes in the graph (and so forth). Instead, we use the trust that node u 
(originator) has in node v (recipient). Intuitively, a higher level of trust should pose 
a lower probably of unauthorised access if such trust has been adequately assessed 
based on empirical data or any other information derived from past experiences. 



Specific mechanisms for trust computation fall out of the scope of the paper, though 
some proposals can be found in Section 2 C.

If v can share this information with a third-level authorised node w, then the risk 
level should consider the probability that w leaks the information to an unauthorised 
entity as well. For this case, the risk value also depends on the trust that u has on w. 
If it cannot be directly inferred by u, then it can be calculated using indirect means, 
such as by combining the trust that u has in v with the trust that v has in w.

Definition 8. Let u, v ∈ V. We define Τ(u,v) as the function that calculates the trust 
that u has on v, denoted by Τ(u,v) = {t / t ∈ [0, 1]}.

In conclusion, we formalize the risk function β in a directed multigraph as follows.

β(u,v,δ) =Ι (u, δ) • (1 − Π s ∈ SΤ(u,s))

where S ⊆ V / s ∈ P(ui, ui+k), with ui = v, ∀ s ∈ S.

In a nutshell, the risk value is computed multiplying the impact by the probability that 
any node weakly connected to the originator u through v discloses the information 
to an unauthorised entity. Please note that the resultant probability is expressed as 
1 – the probability that no node discloses the information, and also considers the 
trust value of u on v. 

Next, the risk function is generalized in order to calculate the risk to which a node 
is exposed in the case that it shares the information will all its strongly connected 
nodes:

β(u,δ) = Ι (u, δ) •  (1 − Πi = v ∈ V Au,i •  Π s ∈ SΤ(u,s))

where Au,i is the adjacency matrix for u, and S the set of nodes reachable through a 
directed path starting in i, for all i strongly connected node with u.

Au,i =

{
1 if nodes u and i are strongly connected
0 otherwise

The function above is applicable as long as |Au,i| > 0. 

For the risk value computation we assume that the nodes do not collude, and thus, 
the probability is calculated unconditionally.

From the formula β(u,v,δ) above, it can be easily inferred that the minimum and 



maximum risk values for an originator u that shares a piece of information δ with a 
strongly connected recipient v correspond to 0 (i.e. both v and all weakly connected 
nodes are fully trusted, that is, Τ(u,s) = 1 ∀ s ∈ S) and Ι (u, δ) (i.e. at least one of the 
nodes is fully distrusted, that is, Τ(u,si) = 0), respectively. Also, it can be observed 
that the risk value increases with the number of recipients, unless these are fully 
trusted. 

It should be noted that the risk value is a dynamic value that has to be updated (re-
calculated) when any of the forming factors changes, such as the impact value or the 
trust in any of the related nodes.

4. FORMAL MODELS OF CYBER SECURITY 
INFORMATION

We represent the knowledge of information security as a weighted graph G = (V, 
E), where V is the set of nodes or vertices that represent pieces of well structured 
information from an element of knowledge, while E is a relation set given by E ⊆ 
V x V, in which each of whose members is a pair (i.e., edge or link) representing a 
relationship between the different pieces of information. 

Definition 9. Elements of knowledge κ define a set of ontologies κ = {κ1, ..., κn}, 
where each κn encodes some knowledge about different domains of information 
security.

In our domain, nodes represent heterogeneous pieces of information from elements 
of the set κ. Thus, we represent this variety of information by using vertex-labelled 
graphs. 

Definition 10. Let ρkn =
{
ρkn

1 , ..., ρkn
m

}
 be a set of properties of a specific κn. 

We say that two nodes u and v are related, denoted σ(u, v), if there is a pair of 
properties (ρi, ρj)  such that 

∫
(ρku

i ) is equal to 
∫

(ρkv
j ) . Formally: 

σ(u, v) = true ↔ ∃(ρi, ρj)/∀ρi ∈ ρku ,∀ρj ∈ ρkv :

∫
(ρku

i ) =

∫
(ρkv

j )

For simplicity, we denote the property throughout κu is associated with κv as pku,v, 
and we denote the piece of information that satisfies σ(u, v) as 

∫
(ρku,v).

In our domain, an edge is represented as e=(u, v, p), where u and v are two pieces 
of information that satisfy σ(u, v), and p is a label representing the shared property 
pku,v. We represent each shared property using edge-labelled graphs. 



Henceforth, each node in this model corresponds to an element of the information 
security knowledge, and each edge corresponds to a relation between those elements. 

Figure 2. shows an exemplification of an information knowledge graph structure, 
where assets are connected to each other, as well as to specific configurations. 
Additionally, exploits can target different vulnerable configurations held by the 
several assets. For instance, asset A3 represents an Oracle Java runtime environment 
application installed on A1 –a Red Hat Linux server. Here, certain configuration C1 
allows the asset to execute Java applet scripts (CCE-10083-4).

Figure 2. A graph example. Different elements of knowledge (CVE, CPE, CCE) are related by a 
number of pieces of information.

A. INFORMATION VALUE AND REASONING OVER GRAPH 
STRUCTURES

We present a quantification of information value based on the relation between 
different elements of knowledge. More precisely, we position that the value of the 
information directly depends on the information already owned by a community 
member, how this information is structured and to what extent is related to 
other pieces of information. In this regard, identifying missing information can 
also contribute to the quantification of information value. Furthermore, there are 
other key attributes for quantifying the information value, such as its relevance, 
timeliness, and accuracy, to name a few. 



Definition 11. Let c be the cost of a piece of information 
∫

(ρku,v), t the time window 
where such cost holds (assuming that cost decays over time), a the degree of reliability 
that the piece of information is accurate, and r how relevant the information is for 
an organization. We define the value of information of a node V as:

V olv(c, t, a, r) = ω·ψ(cv, tv, av, rv)+(1−ω)·
∑

u∈V :σ(v,u)=true

V ol(cu, tu, au, ru)

where ψ determines the subjective value of a vertex V for a given community and 
the second term factors in the aggregated value of adjacent nodes. By cost we mean 
here the amount of resources (economic, computational, etc.) needed to acquire and 
process the information. In our model we assume that there are markets where such 
information can be acquired, and that costs can be known. On the contrary, the 
value is specific to each party and will very likely vary over time. As an example, 
we suggest the next measure for the subjective value of information:

ψ(cv, tv, av, rv) = (cv · av) · e−k·rv ·( t
tv

)

where the first term represents the value of the information and the second an 
exponential decay function over time, k being a decay constant weighted by r. In 
other words, the value of relevant pieces of information will be exponentially bigger 
than non-relevant pieces and it will decay slower over t. Note, too, that the relevance 
may also serve to modulate the risk of disclosure of the information.

Here, the relationship among different nodes could be expressed in a more complex 
way. For instance, some relations are often due to causality, and some others are 
subject to a perception error, i.e. uncertainty. In this regard, graph described on  
Figure 2. shows how easy could be reasoning using a graph structure. For instance, 
if we knew that a given asset A5 is from the same vendor as A6, and we knew that 
the latter have an exploitable configuration, we could reason that the same exploit 
might be applied to A5 with a certain probability. 

Furthermore, graph structures also allow us to establish possible paths from a type 
of node, e.g. an asset, to all other nodes of the same or different type, e.g. exploits. 
In this regard, different conclusions might be extracted depending on the type of 
nodes through the path. On the one hand, if there were a direct connection between 
nodes of the same type such as A1 and A3 in  Figure 2. , compromising A3 would also 
compromise A1 and A4 –as asset A1 is the operating system executing application 
A3 and A4. On the other hand, if there were a connection between nodes of different 
type such as A3 and E1 through a node of types vulnerability and configuration 
(V2 and C1 in the aforementioned example), we could conclude that A3 could be 
compromised using E1.



Thus, reasoning over heterogeneous graph structures in a complex task, which 
requires context-based reasoning, i.e., type of node, length of the walk, etc. 
Note that this section intends to introduce the concept of information value over 
graph structures, and we refer the reader to forthcoming publications for a deeper 
treatment of reasoning about cyber security information and its value.

5. EXAMPLE: AN INFORMATION SHARING 
ALGORITHM

In this section we present an algorithm that aims at achieving the need-to-share 
concept [29], so as to maximise the information sharing within a community 
while the risk value for the originator of information is kept below an established 
threshold (i.e. an acceptable risk level). In the next Subsection we first describe the 
general aspects behind the algorithm, and in the subsequent, a running example to 
illustrate its behaviour.

We do not claim that this algorithm is the only one applicable to the information 
sharing scenario. Actually, there are a number of approaches, where the most 
appropriate one should be selected depending on the particularities of the 
community, the policies applicable to the originator, the information to share at 
each moment, and other contextual information. For instance, the same node may 
decide to apply a different algorithm for different pieces of information depending 
on their level of classification. Or the same node may select a different algorithm 
for the same piece of information at different moments (e.g. a less conservative 
approach may be followed in a crisis situation). 

A. OVERVIEW

The algorithm is a greedy algorithm in the sense that it follows the problem solving 
heuristic of making the locally optimal choice at each stage. The problem to solve 
at each stage corresponds to whether or not sharing a certain piece of information 
with an adjacent node depending on the accumulated risk value and the threshold 
established by the originator. 

The algorithm consists of two well-differentiated phases. In the first one, that we 
call Decision Phase, the originator performs a simulation of how the information 
should be shared across the community in order to keep the accumulated risk value 
that results from the subsequent sharing actions below the desired threshold. At 
the end of this phase the originator is able to conclude what nodes of the graph are 
authorised to access the information.



In the second phase, named Sharing Phase, the sharing process itself is undertaken, 
started by the originator, and by which the pertinent information that allows each 
sharing node to know who are the authorised nodes amongst its adjacent ones is 
also transmitted. 

During the Decision Phase, the simulation orders the adjacent nodes of a certain 
sharing node ni by their trust value from higher to lower, discarding those in whom 
the originator fully distrusts (T(u, xi) = 0) as well as those that have been already 
marked as authorised node. Then, it calculates the accumulated risk value βA(u,v,δ), 
being u the originator and v the node adjacent to u through which ni has been 
reached. βA formula considers the trust values of every node that has already been 
marked as authorised nodes, plus the adjacent nodes of ni. If the resultant value 
of βA is greater than the established threshold, then the simulator discards the last 
adjacent node of the ordered list, and recalculates βA. The analysis is iterated until 
the obtained βA is below the threshold. The adjacent nodes that remain in the list 
when this condition is satisfied are marked as authorised nodes.

The simulation stops analysing a certain sharing node if any of the following 
conditions is met:

• The sharing node has an outdegree equals zero.

• The ordered list is empty or, after discarding the adjacent nodes during the βA 
calculation, there is no one left. This means that the sharing node will not be 
authorised to share the information with any of its adjacent nodes.

• The sharing node already received that piece of information (the algorithm 
considers cyclic graphs).

At the end of the Decision Phase, a subset of nodes V’ ⊆ V and edges E’ ⊆  E will 
have been selected. The resultant subgraph G’ = (V’, E’) is an acyclic directed 
graph (i.e. tree) where the root node is the originator, the rest of the nodes are those 
authorised to access the information and the edges represent the sharing links 
between the nodes. In principle, the search strategy of the Decision Phase could be 
configured to follow either a Breadth- First -Search (BFS) or a Depth-First-Search 
(DFS) [30] as both approaches have the same time (O|E|) and space (O|V|) bounds. 
However, the vertex ordering produced in BFS (i.e. the order in which the vertices 
are explored) better reproduces the behaviour expected in an information sharing 
community. In these communities, each node is strongly connected to other nodes in 
which it explicitly trusts. Therefore, it is expected that any originator will preferably 
share the information with these nodes in the first instance, rather than leveraging 
on weakly connected nodes the increase of the accumulated risk value βA. 

The difference between the sharing process for the originator and any other node is 
that, for the latter, they can share the information (as long as the threshold condition 



is satisfied) with adjacent nodes with which the originating node has no explicit 
trust calculated. For these nodes, the algorithm uses an indirect trust computation 
using the path of nodes from the originator to those nodes. For instance, the indirect 
trust computation for node u on a node x weakly connected through the walk W: u 
 v  w  x is as follows:

Τ(u,x) = Τ(u,v) • Τ(v,w) • Τ(w,x)

This approach helps maximizing the information sharing by permitting the sharing 
with unknown nodes as long as the threshold is not exceeded.

B. AN EXAMPLE

In this section we show the application of the Decision Phase to the graph example 
shown in Figure 3.  following a BFS approach and considering the table of trust 
shown in Table II. In our example, the node n1, as the originator, wishes to share 
some piece of cyber security information with the information sharing community. 

n1

n2

n4

n3
n6

n5

Figure 3. Graph G.



Table II. Table of trust for graph G. A value of 0 means no trust at all; a value within the range 
(0,1) means relative trust; and 1 means full trust. If a node has no explicit (dis)trust in 
some other node, then no value is indicated. No edge appears in the graph between those 
nodes if there is an explicit distrust or when no explicit trust exists.

ΤG(ni) n1 n2 n3 n4 n5 n6

n1
1.00 0.75 1.00 - 0.00 -

n2
- 1.00 0.05 0.6 - 0.35

n3
- - 1.00 - - -

n4
- - - 1.00 - 0.80

n5
- - - - 1.00 -

n6
- - - 0.25 0.90 1.00

We define φG(u,δ) as the risk threshold, that is, the maximum risk value acceptable 
by u for the piece of information δ  within the information sharing community G.

The initial values for our example are the following:

φG(n1,δ): 0.7  Ι (n1, δ): 0.3  AuthNodes:={}

The initial values should be result of a risk analysis carried out by the originator, 
and by which the maximum tolerable risk φG(u,δ) and the impact Ι (n1, δ) for the 
piece of information δ can be estimated. In this example both the initial values 
and the table of trust shown in Table II have been selected to serve for illustrative 
purposes only.

It is worth mentioning that in many cases the originator can exert some control 
over the impact –and, therefore, over the maximum tolerable risk– by selectively 
removing sensitive parts of the information to be shared. In scenarios other than 
cyber security information sharing this is commonly achieved by anonymising 
data, e.g. by removing or aggregating pieces of information.



We next proceed with the example:

1. Analysis of sharing node n1 (originator)

n1

n2

n4

n3
n6

n5

Figure 4. Sharing process for originator n1

Ordered list of adjacent nodes (n1):= {n3, n2}

Calculate accumulated risk level:

βΑ(n1,n1,δ) = Ι (n1, δ) • (1 − Τ(n1, n1) • Τ(n1, n3) • Τ(n1, n2)) = 0.3 • (1 - 1 • 1 • 
0.75) = 0.075

If 0.075 < φG(n1,δ) then update AuthNodes and share with nodes remaining in the 
ordered list:

AuthNodeσ:={n3,n2}

n1

n2

n4

n3
n6

n5

Figure 5. Result of sharing with n2 and n3
3

3  For clarity purposes, we mark the nodes that have already been analysed (n2 in this case).



2. Analysis of sharing node n3

n1

n2

n4

n3
n6

n5

Figure 6. Sharing process for n3

Stop condition applies: deg+(n3) = 0

3. Analysis of sharing node n2

n1

n2

n4

n3
n6

n5

Figure 7. Sharing process for n2

Ordered list of adjacent nodes (n2):= {n4, n6}4

Calculate accumulated risk level:

βΑ(n1,n2,δ) = Ι (n1, δ) • [1 − Τ(n1, n1) • Τ(n1, n3) • Τ(n1, n2) • Τ(n1, n4) • Τ(n1, 
n6)] 5 = Ι (n1, δ) • [1   Τ(n1, n1) • Τ(n1, n3) • Τ(n1, n2) •  (Τ(n1, n2) • Τ(n2, n4)) • 
(Τ(n1, n2) • Τ(n2, n6))] = 0.3 • [1 - 1 • 1 • 0.75 • (0.75 • 0.6) • (0.75 • 0.35)] = 
0.273

If 0.273 < φG(n1,δ) then update AuthNodes and share with nodes remaining in the 
ordered list:

4  Please note that n3 is not included as it has already been marked as authorised.
5  We underline the new factors that are incorporated to the BA formula.



AuthNodeσ:={n3,n2,n4,n6}

n1

n2

n4

n3
n6

n5

Figure 8. Result of sharing with n4 and n6

4. Analysis of sharing node n4

n1

n2

n4

n3
n6

n5

Figure 9. Sharing process for n4

Ordered list of adjacent nodes (n4):= { }6

Stop condition applies: list is empty.

6  In this case, the ordered list is empty as n6, the single node adjacent to n4, has already been marked as 
authorised.



5. Analysis of sharing node n6

n1

n2

n4

n3
n6

n5

Figure 10. Sharing process for n6

Stop condition applies: list is empty7.

After the application of the Decision Phase, the list of authorised nodes to which the 
information can be shared is {n3,n2,n4,n6}.

7  In this case, the ordered list is empty as n5, the single node adjacent to n6, is fully distrusted by the origin 
n1.



6. CONCLUSIONS, CHALLENGES AND 
FUTURE WORK

Information sharing will be central to cooperation activities in cyber security 
operations. But the benefits derived from being a member of an information 
sharing community are not always perceived in the same way by different entities. 
Furthermore, organisations might well be reluctant to share sensitive information 
with partners whose trustworthiness is unclear and/or when the repercussions 
of sharing are not properly understood. These and other factors have been 
already identified as major inhibitors for the proliferation of information sharing 
communities and deterrents to members’ active participation when being part of 
a community. In this paper, we shed some light on a few of these questions and 
point out the need to attack the problem from a formal perspective. In particular, 
we suggest analysing the topology of sharing by modelling as graphs both the 
community and the information network. In doing so, we can leverage a number of 
tools from a number of disciplines –notably graph theory, complex networks, and 
social network analysis– to study relevant aspects of the problem.

Due to space reasons, in this paper we have not given a deep account of any of 
these problems. Rather, our aim is to raise awareness about the benefits that such 
a perspective could bring to information sharing in cyber security. Our formal 
treatment of the information network and sharing communities, including the 
sharing algorithm discussed above, attempts to be merely illustrative of the potential 
that this approach could yield. In fact, this issue have received much attention in 
other contexts where information sharing is essential for agents that cooperate 
towards a common goal. For example, Zhu et al. present in [31] an algorithm to 
share information among a set of agents that operate in an ad hoc fashion. Each 
agent must decide whether to broadcast sensed and/or received information 
to neighbouring members. The approach is similar to ours in the sense that the 
problem is couched as one of optimal decision-making. However, the focus in [32] 
is on maximising sharing and minimising communication cost, whereas in cyber 
security risk factors are paramount.

We are currently exploring in greater depth several of the work areas discussed 
throughout this paper. Specifically:

• Some metrics and techniques well known in complex and social network 
analysis can easily be reinterpreted in this domain. For example, information 
centrality measures the efficiency of a network in delivering information. 
Similarly, the betweenness centrality of a node measures the importance of 
node in a network in terms of how many shortest paths between any other 
pair of nodes pass through it. Both measures, together with other centrality 



quantities, can be valuable in establishing efficient sharing policies and 
assessing attributes of individual participants. Analogously, the centrality of a 
piece of information could be used as a proxy for, e.g., its relevance.

• Trust- and risk-based algorithms for the dissemination of information through 
the community. We are currently developing flexible but robust schemes that 
take as input a description of the sharing context (e.g., need-to-share this data, 
maximum risk allowed, etc.) and choose paths along the community graph so 
as to maximise dissemination while keeping risk of disclosure under control. 
We believe that this issue is particularly relevant when automating information 
exchange mechanisms, as the risks of sharing too much are apparent. However, 
unintended disclosures have very different consequences if the receiver is a 
highly trusted ally or an occasional collaborator, hence the need to explicitly 
consider trust in the decision making process. Similarly, privacy issues might 
be a major deterrent when parties face the problem of whether to share or 
not [31]. In this regard, both technical (e.g., trust-building mechanisms, data 
anonymisation) and non-technical (e.g., mutual agreements) measures should 
be further explored.

• Resilient but trusted communities. In many contexts, it is crucial to ensure that 
information reaches the intended recipients in time and with some minimum 
guarantees of risk containment. This requires building a community where 
paths with sufficient trust are always present, avoiding the presence of bridge 
nodes (i.e., nodes necessarily present in a subset of paths) and cut edges/
nodes (i.e., those that make subset of nodes disconnected from each other if 
removed).
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APPENDIX A: MSM ACRONYMS

CAPEC – Common Attack Pattern Enumeration and Classification.

CCE – Common Configuration Enumeration.

CCSS – Configuration Scoring System.

CPE – Common Platform Enumeration.

CVE – Common Vulnerabilities and Exposures.

CVRF – Common Frameworks for Vulnerability Disclosure and Response.

CVSS – Common Vulnerability Scoring System.

CWE – Common Weakness Enumeration.

CWSS – Common Weakness Scoring System.

CybOX – Cyber Observable Expression.

CYBEX – The Cybersecurity Information Exchange Framework.

IODEF – Incident Object Description Exchange Format.

MAEC™ – Malware Attribute Enumeration and Characterization.

OVAL – Open Vulnerability and Assessment Language. 

OCIL – Open Checklist Interactive Language.

RID – Real-time Inter-network Defense.

RID-T – Transport of Real-time Inter-network Defense.  

SBVR – Semantics of Business Vocabulary and Business Rules.  

STIX – Structured Threat Information Expression.

SWIDs – Software Identification Tags.

XCCDF – Extensible Configuration Checklist Description Format.


