
Enhancing Graph-based Automated DoS
Attack Response

Gabriel KLEIN, Marko JAHNKE, Jens TÖLLEa,1

Peter MARTINIb
a Research Institute for Communication, Information

Processing and Ergonomics (FGAN-FKIE), Germany
b Insitute of Computer Science IV, University of Bonn, Germany

Abstract. Timely and appropriate reactions to detected denial-of-service attacks
against computer networks are crucial in both civilian and military settings.
GrADAR is an intuitive graph-based approach for assessing the effects of DoS at-
tacks against computer networks so that response measures can be automatically
selected without human intervention. However, GrADAR has limitations insofar
as implicit effects of countermeasures are only taken into account by propagation
towards user nodes. Possible effects in the other directionare only considered if
they are explicitly specified. For this, they need to be exactly known in advance
which is often infeasible. This contribution presents an extension to GrADAR, in
which we consider resource workload and processing capabilities and their effects
on resource availability. We incorporate workload measurements into the GrADAR
model which are done by passive analysis of network traffic. We further augment
the active availability probes with passive measurements.This ensures more ac-
curate availability values because additional measurement traffic that might falsify
results only needs to be injected when resources are currently not accessed.

Keywords. denial-of-service attacks, automated response, responseevaluation,
passive availability measurement

Introduction

In recent years, the number of attacks against computer networks has steadily increased.
They cannot only be observed in civilian scenarios (e. g. e-commerce or online banking)
but also in military settings. Among these attacks, denial-of-service attacks are the most
prevalent, often resulting in inaccessibility of servicesand/or entire networks. This can
result in enormous financial losses, in case of commercial applications, and negatively
impact battle readiness where military networks are concerned.

In typical wired networks, such attacks can be detected witha high degree of accu-
racy by incorporating intrusion detection systems into thenetworks’ perimeter defence.
Once detected, security personnel can then suitably react to these attacks. However, be-
cause of the increased speed and reliability, it is desirable to react to detected attacks in
an automatic fashion. For the automatic selection of response measures, it is necessary

1Corresponding Author: Gabriel Klein, FGAN-FKIE, Neuenahrer Str. 20, 53343 Wachtberg, Germany;
E-mail:g.klein@fgan.de



to quickly and accurately estimate the effects of the respective countermeasure on the
network resources.

In previous work, we have proposed GrADAR [1,2], an intuitive approach to create
and maintain a model of a computer network and the availability of its resources from the
observations of deployed monitoring systems. The graph-based model is able to express
both the effects of DoS attacks and the results of available response measures prior to
their application in the real-world network. Thus, the approach provides a methodology
for automatically selecting response measures to detectedattacks. The most appropriate
response is chosen based on metrics which are well-known from the pragmatic view of
network security officers.

This contribution proposes an extension to our previous GrADAR approach that
seeks to incorporate the effects of network and resource workload into the availability
estimation. This will permit a more detailed modelling of the current network state. Fur-
ther, it will allow the specification of the effects of more complex DoS countermeasures.
To further improve the availability measurements and reduce the workload placed on the
network and resources, passive measuring is employed instead of active probing.

The rest of this paper is structured as follows: section 1 introduces related work done
in the area of passive measurements. Subsequently, section2 gives an overview of the
GrADAR approach as well as some of its limitations. Section 3presents the proposed
GrADAR extensions, describing workload and the measurement framework in more de-
tail. Section 4 portrays first results and, following that, section 5 presents a summary and
an outlook on future work.

1. Related Work

The area of passive network analysis has been a research areaof interest for a number
of years. In the context of this contribution, approaches concerned with the inference of
server workload and the identification of network flows are ofparticular interest.

In [3], Barford and Crovella describe an architecture for actively and passively mea-
suring the effects of Web server and network workload on the quality of client connec-
tions. They show that increasing network load causes a deterioration of connection qual-
ity. However, they observe a positive effect of server load on traffic characteristics and
attribute this to a reduced burstiness of traffic.

Eriksson et al. [4] reiterate a methodology for determiningthe network structure by
passive measuring of hop counts. They address the issues of missing hop count data and
how to extract topological information from large hop countdatabases.

Passive measurement is also a popular method for determining the characteristics
of network connections such as bandwidth, latencies or packet loss statistics. Seshan et
al. [5] propose SPAND, a system in which sensors distributedthroughout the network
perform passive measurements and report to central performance servers where the data
is collated. In [6], Lowekamp presents a report on the Wren project which deals with
the development of network performance monitoring solutions. Here active and passive
measurements of traffic statistics are combined to reduce the amount of artificial traffic
wherever possible.

To passively determine availability and workload, observed traffic needs to be as-
sociated with the resources between which it flows. Distinctflows can, for example, be



identified using NetFlow [7], but correlations between within the same or different flows
also need to be ascertained subsequently. This is often doneby simple payload inspec-
tion, although this potentially requires large amounts of memory. However, recent ap-
proaches for the identification of upper layer protocols include machine learning [8,9]
and multi-scale gamma models [10].

2. GrADAR Overview

In the GrADAR approach, a simplified model of the real-world network is created in or-
der to predict the effects of available response measures against denial-of-service attacks.
Figure 1 shows an overview of the approach.

Figure 1. Schematic overview of the GrADAR approach.

2.1. Nomenclature

The core concept of GrADAR is based on theavailability of resources. Resources (as
suggested in [11]) can be either services provided by hardware or software components
(denoted asS), or users (denoted asU). Therefore, the set of resources isR = S ∪ U .

Each resourcer has an associated valueA(r) ∈ [0, 1], signifying the extent to which
it is available to other resources. In [12] and [13], the concept of resource-typical transac-
tions was proposed. We adopt this concept and define a resource’s availability as the time
needed for a transaction with the resource. Since a resourcetypically requires interaction
with other resources to function correctly, we assume that its availability is the result
of two independent factors, an internal state (theintrinsic availability) and the values of



other associated resources (thepropagatedavailability). Thus, a resource’s availability
is defined as

A(r) = AI(r) · AP (r) (1)

for eachr ∈ R.
A resource r may be dependent on other resourcess1, . . . , sn (denoted

asr ⊲ s1, . . . , r ⊲ sn). In this case, the degree to whichr depends on each of these may
vary [14,15] and can be specified by weighting the respectivedependency. This can be
formalised as

AP (r) = Dr (wr,s1
(A (s1)) , wr,s2

(A (s2)) , . . . , wr,sn
(A (sn))) , (2)

whereDr : [0, 1]n → [0, 1] is a dependency function andwr,si
: [0, 1] → [0, 1] are

corresponding dependency weighting functions. In optimalconditions,

Dr (wr,s1
(1) , . . . , wr,sn

(1)) = 1.

A more detailed discussion of this can be found in [2].

2.2. Dependency Graph

To represent the availability dependency relationships between the set of resourcesR, the
resources in the real-world network are modelled as a directed acyclic grapĥG = (V̂ , Ê)
with V̂ ⊆ R andÊ ⊆ ((S ∪ U) × S). Its vertices correspond to the resources and the
edges correspond to the dependency between the respective resources. These resource
dependencies need to be determined beforehand, either analytically or experimentally.̂G
contains an edge(r, s) iff r⊲s. These edges are labelled with the corresponding weighting
functionwr,s. This graph is called thedependency graphand reflects the ideal state of
the network. Let̂G be the set of all possible dependency graphs.

2.3. Accessibility Graph and Overall Availability

A DoS attack typically affects the availability of resources. Thus, there is the possibility
that some resources might no longer be accessible to others.Therefore, a second graph
is required, the so-calledaccessibility graph. Mutual accessibility of a set of resourcesR

is expressed by a graphG = (V, E) with V ⊆ R andE = ((S ∪ U) × S), in which an
edge(r, s) exists when a resources is directly accessible fromr. The verticesr ∈ R of
the accessibility graph are labelled with the corresponding resource’s availabilityA(r).

The availability of user nodes is interpreted as the user-perceived availability of the
network. Since the network supports one or more users or groups of users in conducting
a common mission, we define the overall availability of the network as the weighted
average of all user nodes’ availability values:

A(G) :=
∑

u∈U

m(u) · A(u),



wherem(u) is therelative importanceof useru to the common mission which needs to
be determined beforehand or adaptively, and

∑
u∈U

m(u) = 1. LetG be the set accessi-
bility graphs.

Usually, monitoring systems deployed in the network will only be able to observe
availability values for some of the network’s resources. This is especially true for users,
for which an availability cannot be objectively measured. Thus, the availability of re-
sources for which values cannot be observed need to be estimated. For a resourcer with
r ⊲ s1, . . . , r ⊲ sn, this estimation is done by propagating the availability values of the
resourcess1, . . . , sn in the inverse direction of the corresponding dependency relation-
ship expressed in the dependency graph, i. e. along the edges(s1, r), . . . , (sn, r), and
then calculatingA(r) according to equations (1) and (2) withAI(r) = 1.0. This can be
efficiently done, for example, with a depth-first search algorithm, starting from the user
vertices and terminating at vertices withdegout(r) = 0.

As opposed to the dependency graph, the accessibility graphshows the actual current
state of the network.

2.4. Response Selection

Once an attack has been detected, an appropriate reaction should be selected automat-
ically. With the current dependency grapĥG and the current availability graphG, we
define acountermeasureor response measureas a transformation

θ : Ĝ × G → Ĝ × G.

The dependency grapĥG′ = (V̂ ′, Ê′) is obtained fromĜ by adding or removing vertices
or edges, and the accessibility graphG′ = (V ′, E′) is derived fromG by also adding or
removing vertices or edges but, additionally, vertex availability values can be changed.
Let the set of available countermeasures be denoted asΘ.

As response measures may be arbitrarily complex in nature, we assume that a single
response measureθ can be divided intoNθ ∈ N

+ successive atomicresponse stepsθ(i):

θ = θ(1) ◦ . . . ◦ θ(Nθ).

Each of these real-world response stepsθ(i) corresponds to one of the graph transforma-
tion primitives mentioned above (adding/removing vertices or edges, setting availabil-
ity). The effects of such a response step can be either directly associated with the ac-
tion (explicit impact) or a result of changes in the environment due to the responsestep
application (implicit impact).

For the automatic response measure determination, each available countermeasure
θ ∈ Θ is now applied in parallel to the current accessibility graph. For each change in the
accessibility graph, the propagation algorithm mentionedabove needs to be executed.
The resulting graphs (so-calledresponse graphs) are then compared with respect to dif-
ferent metrics, e. g.expected response successor expected response costs[2], and the
most appropriate response is then applied to the real-worldnetwork.

The resulting dependency graph of one such GrADAR cycle is used as the input
for the subsequent iteration. Thus, the process constitutes a so-calledclosed-loop control
system.



2.5. Current Limitations

During the validation of the GrADAR approach it became apparent that correctness and
robustness could only be achieved if the precise effects of real-world countermeasures
in the graph space could be accurately predicted. Because ofthe closed control loop
structure of the approach, subsequent iterations of the loop would operate on incorrect
input.

So far, the response measures for which effects were specified consisted only of
blocking access to specific resources (e. g. closing a firewall port) or migrating resources
to different locations (e. g. installing a new server to replace another). The effects of these
operations on the graph could be specified fairly easily in terms of changed availability
values or changing edges in the graph.

However, more complex behaviour of resources, such as the interactions between
workload placed on a resource and its processing capacitiesand their effect on that re-
source’s availability, are only expressible if fairly wellknown and specified in advance.
This is because the effects are taken into account by propagating them through the acces-
sibility graph according to the update algorithm. This imposes constraints in that effects
can only be propagated in the reverse direction of the dependency relationship. Effects on
resources in the other direction cannot currently be expressed. For example, blocking a
DoS attack against a Web server at a firewall port would have the explicit impact of a 0.0
availability at the firewall port. This would be propagated to the (dependent) user node.
However, a possible implicit impact could be an increased availability of the Web server.
This is currently expressible only if the changes in availability are known beforehand
and “hard-coded” into the graph transformation, somethingwhich is often impossible.
It is desirable to predict such effects on resource availability dependent on the current
network situation.

Furthermore, availability measurements are currently performed only through active
probing, i. e. by sending requests to the respective resources and measuring and normal-
ising the time required for an answer. This poses two problems. First, the measuring
process itself produces workload for the network and the target resource, and second, it
requires the measuring process to produce a traffic pattern which is representative for the
specific resource.

3. Beyond GrADAR: Improving Availability Estimation

Due to the limitations recounted in section 2.5, we propose to enhance the GrADAR
approach by incorporating the effects of workload and resource capacity into the graph-
based model and avoiding active probing in favour of passiveavailability measurements.
We believe that through the enhancements described in this section the correctness and
robustness of the approach can be significantly improved.

3.1. Solution Idea: Propagation of Workload

To more accurately represent the graph-based equivalents of DoS attack response mea-
sures, we propose to incorporate the workload placed on the various resources into the
GrADAR model. For this, the relationships between resourceworkload and its availabil-



ity need to be determined, especially in the area of a resource’s processing capacity. Ad-
ditionally, dependency relations between the workload of different resources should be
investigated. If such relationships exist, this could allow the inference of workload values
for resources of which workload cannot be directly measured. Similar to availability es-
timation, this could be done by propagation according to theworkload relationships; see
figure 2 for an example. Here, two users (or user groups),User_1 andUser_2, com-
municate with an HTTP server,HTTP_S1, via two separate firewall ports,HTTP_F1
andHTTP_F2. In figure 2(a), the workload generated during a DoS attack byUser_1
is propagated (in the direction of the dependency relationship) to the firewall port and
the HTTP server. Because of this workload, the HTTP server has an availability of 0.0
which, in turn, is propagated (against the dependency relationships) to the resources de-
pendent on it. An example response to such an attack, namely blocking the attacker at
the firewall, is depicted in figure 2(b). As a result, the workload generated byUser_1 is
no longer propagated toHTTP_S1 which causes an increase in the server’s availability.
This, in turn, is propagated toUser_2.

(a) Workload-based DoS attack. (b) Example response to DoS attack.

Figure 2. Example of workload propagation in the GrADAR model.

3.2. Workload Definition

Before the workloadL(r) of a resourcer ∈ R can be effectively measured, it needs
to be defined in a suitable fashion. The dictionary defines workload as “the amount of
work assigned to, or done by, a worker or unit of workers in a given time period” (The
American Heritage Dictionary, 2nd Edition). Similar to thedefinition of availability as
the normalised duration of a resource-typical transaction(see e. g. [12,13]), a resource’s
workload can thus be defined as the number of typical transactions a resource needs
to process per unit of time. Since a networked application scenario contains multiple
types of resources, different types of “work” need to be considered as each resource has
transactions that are typical for it; for example, the number of concurrent transactions a
Web server needs to process. Table 1 contains a listing of possible resources along with
the availability and workload definition for each of them.



Table 1. Workload definitions for selected resources.

Resource Availability definition Workload definition

IP stack ICMP ping response time IP packets/time

CMS Delay for receiving backend content Current active transactions

IRC server Delay for connection, joining channel and
sending a message

Current active transactions

DB server Delay of query from Web server backend Current no. of transactions

DNS server Delay for result of lookup query Requests/time

MAC layer Interface up/down Frames/time

CPU
Execution delay for application requiring
CPU/memory/HDD

Average CPU load

Memory Average memory consumption

HDD Average consumed HDD capacity

To adequately compare the workload of different types of resources, workload val-
ues need to be normalised:

L̃(r) =
L(r)

Lmax(r)
, (3)

whereLmax(r) is the maximum workload which a resource can adequately process
within a certain time frame. This is closely related to the definition of availability (c. f.
[1,2]) where request-response delays are normalised with respect to a maximum accept-
able time from a user’s perspective.

3.3. Measurement Framework

The measurement of availability and workload is performed according to the framework
outlined in the SDL [16] diagram depicted in figure 3.

Passive sensors at appropriate locations in the network (e.g. at central switches or a
firewall) constantly observe passing traffic. Differentconversationsbetween consumers
and providers of a service, and thetransactionsthey comprise are identified by analysing
packet headers and correlating certain fields, e. g. sequence numbers, IP addresses or
port numbers. For each recognised transaction, various properties of the traffic such as
average packet loss, transaction duration, average round-trip time, jitter, etc. can be used
to evaluate the availability of a resource; c. f. [12] and [13] for details of how traffic
properties can be used to make quantitative statements about the quality of a service.
Thus, a resource’s availability value can be updated after each completed transaction.

By logging the number of transactions for different services and/or protocols, these
sensors can also establish a current workload for the observed resources. As already
mentioned (c. f. table 1), the number of typical transactions within a specified period of
time (or possibly the ratio of initiated vs. completed transactions) can serve as a workload
metric.

The goal of our work is the identification of current threats to a network and the
ability to react in near-real-time. Bearing this in mind, itseems advisable to consider the
development of resource availability and workload over a customisable period of time
rather than only the currently measured values. Using this as a base for decisions may
reduce the likelihood of overreactions or false positives.



Figure 3. SDL diagram of the measurement framework.

The aforementioned description of passive measurements assumes that representa-
tive traffic for all relevant resources can always be observed. This may not be the case
in real-world configurations, e. g. if clients are underEMCON in military settings. Thus,
to always retain an overview of the current network status, active measurements need
to be performed if no traffic was observed for a certain amountof time. In the case of
availability, this is done via an active probe which consists of a (representative) request
to the respective resource. The resulting availability is the normalised duration of this
request. The resources’ workload needs to be queried directly via appropriate interfaces
at the resources themselves (e. g. via SNMP [17]), although this introduces a certain de-
gree of dependency on specific applications and protocols. Note that, when performing
active measurements, the load generated by these artificialrequests needs to be taken
into account and compensated when determining resource workload.

We are aware that both active and passive measurements have disadvantages. In the
case of active probing this is the injection of additional traffic into the network resulting
in increased workload for the targeted resources. On the other hand, when observing
traffic passively, the volume of traffic to be dealt with is potentially prohibitively large.
We try to avoid this by restricting ourselves to the analysisof only packet headers instead
of entire packets.

4. Preliminary Results

We have performed first simple workload and availability measurements in a network
topology depicted in figure 4. A client accesses a content management system (CMS)
which, in turn, retrieves its data from a database server on adifferent host (scenario 1). In
a second measurement scenario (scenario 2), both the CMS andthe database are located



on the same host. In both cases, the servers are separated from the client by a firewall host.
The servers hosting the Web and database servers are older-model single core machines
and are thus not able to process requests entirely in parallel.

The values shown in figures 5 and 6 were obtained by generatingan increasing
number of concurrent requests per time frame. For each number of concurrent requests,
the measurement process was repeated 300 times. The mean request-response durations
were used as the basis for the availability calculations.

Client

Firewall

CMS
DB

backend

Figure 4. Server setup during measurements.

Figure 5 shows the measurement results for scenario 1. The normalised CMS work-
load and availability are plotted against an increasing number of concurrent requests di-
rected at the Web server. At first, the CMS availability degrades linearly with the in-
crease in workload. Beyond around 15 concurrent requests, an overload situation is en-
tered, in which the availability remains at zero (shown as triangle-shaped data points in
the diagram). At this point, the server cannot process requests within an acceptable time
frame.

0 5 10 15 20 25

0.
0

0.
5

1.
0

1.
5

Number of concurrent requests

C
M

S
 w

or
kl

oa
d/

av
ai

la
bi

lit
y

0.
0

0.
5

1.
0

1.
5

CMS availability
CMS workload
CMS overload (workload above 1.0)

Figure 5. CMS workload and availability plotted against increasing number of concurrent requests; CMS and
DB server on separate hosts.

In the second scenario, where the DB server is on the same hostas the CMS server,
the CMS availability degrades slightly more quickly (depicted in figure 6). This is most
probably because both server processes share the same system’s resources. Load pro-
cessed by the CMS is partially transferred to the database, which, in turn, reduces the



0 5 10 15 20 25

0.
0

0.
5

1.
0

1.
5

Number of concurrent requests

C
M

S
 w

or
kl

oa
d/

av
ai

la
bi

lit
y

0.
0

0.
5

1.
0

1.
5

CMS availability
CMS workload
CMS overload (workload above 1.0)

Figure 6. CMS workload and availability plotted against increasing number of concurrent requests; CMS and
DB server on the same host.

available resources for the CMS. Also, the availability curve is less smooth. The small
confidence intervals suggest that the reasons for the outliers are systematic. They could,
for example, be caused by changes in scheduling policies. This is also true for the outlier
observed in scenario 1.

0.0 0.5 1.0 1.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

CMS workload

C
M

S
 a

va
ila

bi
lit

y

cor. coeff.: −0.934

(a) Separate CMS and DB servers

0.0 0.5 1.0 1.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

CMS workload

C
M

S
 a

va
ila

bi
lit

y

cor. coeff.: −0.934

(b) Common CMS and DB server

Figure 7. Relationship between resource workload and availability.

Figure 7 shows the relationship between workload and availability for both scenar-
ios. In both cases, the correlation coefficient is very closeto −1. This suggests the ex-
istence of a functional dependency between resource workload and availability. In this
simple first example, we observe a linear dependency betweenthe two values. However,
more complex dependencies may exist, e. g. in the case of a multi-core system which is
able to process multiple requests in parallel. Here, up to a certain workload, the avail-
ability should not be markedly impaired at all. Also, when considering other types of
resources (e. g. the operating system kernel), binary relationships are possible, where a



resource remains fully available up to a certain workload, after which it immediately
drops to zero.

5. Summary and Further Work

This contribution has discussed an extension to GrADAR, an approach for automatically
assessing the effects of denial-of-service countermeasures. Including the effects of re-
source workload into the GrADAR model permits the specification of complex counter-
measure effects.

Workload and availability measurements were performed in asimple DMZ-like
setup which included machines representing a client, a firewall host and two servers.
They were conducted using a passive monitoring solution capable of calculating resource
workload and availability from observed network traffic. The results of these measure-
ments indicate a possible functional dependency between resource workload and avail-
ability which justifies the incorporation of workload measurements into the GrADAR
approach.

The work done regarding the GrADAR extension is of a preliminary nature. There
are numerous aspects which need to be considered in future work. So far, the generated
traffic used for measuring workload and availability consisted only of a steadily increas-
ing number of concurrent clients requesting the index page of an e-commerce Web site.
Representative traffic for such a scenario needs to be generated for a more detailed eval-
uation; e. g. according to a formal customer state model as depicted in figure 8 with dif-
ferent states for each type of viewed page and appropriate state transition probabilities.
Also, possible dependencies between the workload of different resources needs to be
investigated, e. g. workload placed on the CMS and its backend database.

Search
View

article

View

recomm.

View

cart

Check−

out

Main
page

1 2 3 4 5 6

P1,4

P5,6

P5,2

Figure 8. Possible state model underlying browsing by Web shop customers.

Where the passive analysis of traffic is concerned, problemsmay arise when only
parts of conversations between resources can be observed, e. g. due to node movement
in mobile ad hoc networks. In this case it might become necessary to harmonise the
observations of multiple sensors distributed throughout the network.

Acknowledgements

The authors wish to thank Christian Thul for his excellent development work and his
valuable feedback.



References

[1] M. Jahnke, C. Thul, and P. Martini. Graph based metrics for intrusion response measures in computer
networks. InProc. of the 3rd LCN Workshop on Network Security. Held in conjunction with the 32nd
IEEE Conference on Local Computer Networks, Dublin, Ireland, October 2007.

[2] M. Jahnke, C. Thul, and P. Martini. Comparison and improvement of metrics for selecting intrusion
response measures against DoS attacks. In A. Alkassar, editor, Proc. of the Sicherheit2008 Conference,
Saarbrücken, Germany, April 2008.

[3] P. Barford and M. Crovella. Measuring Web performance inthe wide area.SIGMETRICS Performance
Evaluation Review, 27(2):37–48, September 1999.

[4] B. Eriksson, P. Barford, R. Nowak, and M. Crovella. Learning network structure from passive mea-
surements. InIMC ’07: Proceedings of the 7th ACM SIGCOMM Conference on Internet Measurement,
pages 209–214, New York, NY, USA, 2007. ACM.

[5] S. Seshan, M. Stemm, and R. H. Katz. SPAND: Shared passivenetwork performance discovery. Tech-
nical Report UCB/CSD-97-967, EECS Department, Universityof California, Berkeley, August 1997.

[6] B. B. Lowekamp. Combining active and passive network measurements to build scalable monitoring
systems on the grid.SIGMETRICS Performance Evaluation Review, 30(4):19–26, 2003.

[7] B. Claise. Cisco Systems NetFlow Services Export Version 9. RFC 3954 (Informational), October 2004.
[8] N. Williams, S. Zander, and G. Armitage. Evaluating machine learning algorithms for automated net-

work application identification. Technical Report 060410B, Centre for Advanced Internet Architectures
(CAIA), March 2006.

[9] P. Barlet-Ros, V. Carela-Español, E. Codina, and J. Solé-Pareta. Identification of network applications
based on machine learning techniques. InTNC 2008: Proc. of the Terena Networking Conference, 2008.

[10] Y. Himura, K. Fukuda, K. Cho, and H. Esaki. Characterization of host-based traffic with multi-scale
gamma model. InProc. of the 2nd CAIDA/WIDE/CASFI Workshop, Seoul, South Korea, April 2009.

[11] T. Toth and C. Kruegel. Evaluating the impact of automated intrusion response mechanisms. InACSAC
’02: Proceedings of the 18th Annual Computer Security Applications Conference, page 301, Washing-
ton, DC, USA, 2002. IEEE Computer Society.

[12] J. Mirkovic, P. Reiher, and A. Hussain. Measuring denial of service. InProc. of the ACM Workshop on
Quality of Protection (QoP), pages 53–58. ACM Press, 2006.

[13] J. Mirkovic, A. Hussain, B. Wilson, S. Fahmy, P. Reiher,R. Thomas, W. Yao, and S. Schwab. Towards
user-centric metrics for denial-of-service measurement.In Proc. of the Workshop on Experimental Com-
puter Science, 2007.

[14] S. Bagchi, G. Kar, and J. Hellerstein. Dependency analysis in distributed systems using fault injection:
Application to problem determination in an e-commerce environment. InProc. of the 12th Intl. Work-
shop on Distributed Systems: Operations & Management, 2001.

[15] P. Bahl, P. Barham, R. Black, R. Chandra, M. Goldszmidt,R. Isaacs, S. Kandula, L. Li, J. MacCormick,
D. Maltz, R. Mortier, M. Wawrzoniak, and M. Zhang. Discovering dependencies for network manage-
ment. InProc. of the V HotNets Workshop, 2006.

[16] ITU. Specification and Description Language (SDL) (ITU-T Recommendation Z.100). International
Telecommunications Union, August 2002.

[17] J. D. Case, M. Fedor, M. L. Schoffstall, and J. Davin. Simple network management protocol (SNMP).
RFC 1157 (Historic), May 1990.


